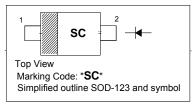


SOD-123

MBR0520

www.china-base.com.hk


Surface Mount Schottky Barrier Diode

Features

- Very low forward voltage
- High Current Capability

PINNING

PIN	DESCRIPTION
1	Cathode
2	Anode

Absolute Maximum Ratings (T = 25 °C)

Parameter	Symbol	Value	Unit
Peak Reverse Voltage	V_{RRM}	20	V
Working Peak Reverse Voltage	V_{RWM}	20	V
DC Reverse Voltage	V _R	20	V
Average Rectified Forward Current	I _{F(AV)}	0.5	А
Non-Repetitive Peak Forward Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	5.5	А
Thermal Resistance Junction to Ambient	$R_{ heta JA}$	340	°C/W
Thermal Resistance Junction to Lead	R _{θJL}	150	°C/W
Junction Temperature	T _j	- 65 to + 150	°C
Storage Temperature	T _{stg}	- 65 to + 150	°C

¹⁾ Following any rated load condition and with rated VRRM applied.

Characteristics at T_a = 25 °C

Parameter	Symbol	Max.	Unit
Forward Voltage at $I_F = 0.1$ A, $T_j = 25$ °C at $I_F = 0.5$ A, $T_j = 25$ °C at $I_F = 0.1$ A, $T_j = 100$ °C at $I_F = 0.5$ A, $T_j = 100$ °C	V _F	0.375 0.44 0.26 0.36	V
Reverse Current at $V_R = 10 \text{ V}$, $T_j = 25 \text{ °C}$ at $V_R = 20 \text{ V}$, $T_j = 25 \text{ °C}$ at $V_R = 10 \text{ V}$, $T_j = 100 \text{ °C}$ at $V_R = 20 \text{ V}$, $T_j = 100 \text{ °C}$	I _R	40 150 3 7	μΑ μΑ mA mA
Total Capacitance at V_R = 5 V (test signal range 100 KHz to 1 MHz), T_j = 25 °C	C _{tot}	110	pF

SOD-123

MBR0520

www.china-base.com.hk

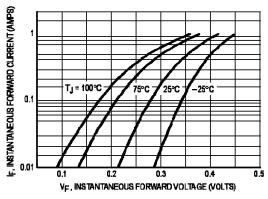


Figure 1. Typical Forward Voltage

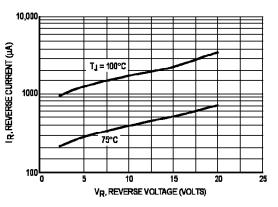


Figure 2. Typical Reverse Current

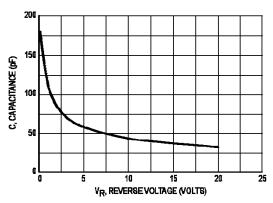


Figure 3. Typical Capacitance

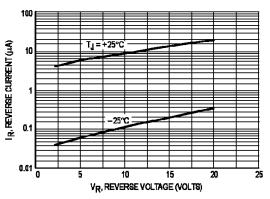


Figure 4. Typical Reverse Current

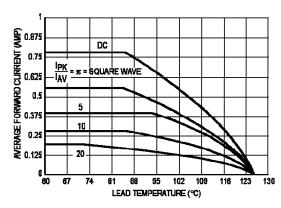


Figure 5. Current Derating (Lead)

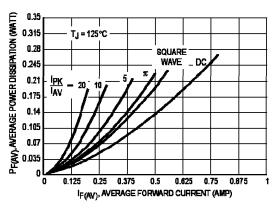


Figure 6. Power Dissipation